martes, 3 de junio de 2014

PROBLEMAS


REGLA DE LA ADICIÓN 
Ejemplo 1:  Se  lanzan  un   dado.  Usted  gana  $ 3000   pesos   si   el  resultado  es    par  ó   divisible  por  tres   ¿Cuál es  la  probabilidad  de  ganar ?
Lo  que  primero  hacemos   es  definir  los  sucesos :
Sea  A = resultado  par :  A = { 2, 4, 6 }
Sea  B = resultado   divisible por  3 : B = { 3, 6 }   .  Ambos  sucesos  tienen  intersección ?
                                                                                 Luego,
                                                         
                                                         

Ejemplo 2 : Se  tiene  una  baraja  de  cartas (  52  cartas  sin  jockers),  ¿ Cuál  es la  probabilidad  de   sacar  una   Reina  ó  un  As  ?  
Sea A = sacar  una  reina    y   sea  B = sacar  un  as,    entonces :
                              


REGLA DE LA MULTIPLICACIÓN

1(Inspección de Lotes)
Un lote contiene $100$ items de los cuales $20$ son defectuosos. Los items son seleccionados uno despues del otro para ver si ellos son defectuosos. Suponga que dos items son seleccionados sin reemplazamiento(Significa que el objeto que se selecciona al azar se deja por fuera del lote). ¿ Cúal es la probabilidad de que los dos items seleccionados sean defectuosos?.
Solución
Sea los eventos
MATH
entonces dos items seleccionados seran defectuosos, cuando ocurre el evento $A_{1}\cap A_{2}$ que es la intersección entre los eventos $A_{1}$ y $A_{2}$. De la información dada se tiene que:
MATH MATH
así probabilidad de que los dos items seleccionados sean defectuosos es
MATH
Ahora suponga que selecciona un tercer item, entonces la probabilidad de que los tres items seleccionados sean defectuosos es
MATH

ean A y B dos sucesos aleatorios con p(A) = 1/2, p(B) = 1/3, p(A intersección B)= 1/4. Determinar:
1determinar
2determinar
3determinar
4determinar
5determinar
2Sean A y B dos sucesos aleatorios con p(A) = 1/3, p(B) = 1/4, p(A intersección B) = 1/5. Determinar:
1determinar
2determinar
3determinar
4determinar
5determinar
6determinar
3En un centro escolar los alumnos pueden optar por cursar como lengua extranjera inglés o francés. En un determinado curso, el 90% de los alumnos estudia inglés y el resto francés. El 30% de los que estudian inglés son chicos y de los que estudian francés son chicos el 40%. El elegido un alumno al azar, ¿cuál es la probabilidad de que sea chica?
4De una baraja de 48 cartas se extrae simultáneamente dos de ellas. Calcular la probabilidad de que:
1Las dos sean copas
2Al menos una sea copas
3Una sea copa y la otra espada

No hay comentarios:

Publicar un comentario